Polymerase eta deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair.

نویسندگان

  • C L Limoli
  • E Giedzinski
  • W F Morgan
  • J E Cleaver
چکیده

The xeroderma pigmentosum variant (XPV) is a genetic disease involving high levels of solar-induced cancer that has normal excision repair but shows defective DNA replication after UV irradiation because of mutations in the damage-specific polymerase hRAD30. We previously found that the induction of sister chromatid exchanges by UV irradiation was greatly enhanced in transformed XPV cells, indicating the activation of a recombination pathway. We now have identified that XPV cells make use of a homologous recombination pathway involving the hMre11/hRad50/Nbs1 protein complex, but not the Rad51 recombination pathway. The hMre11 complexes form at arrested replication forks, in association with proliferating cell nuclear antigen. In x-ray-damaged cells, in contrast, there is no association between hMre11 and proliferating cell nuclear antigen. This recombination pathway assumes greater importance in transformed XPV cells that lack a functional p53 pathway and can be detected at lower frequencies in excision-defective XPA fibroblasts and normal cells. DNA replication arrest after UV damage, and the associated S phase checkpoint, is therefore a complex process that can recruit a recombination pathway that has a primary role in repair of double-strand breaks from x-rays. The symptoms of elevated solar carcinogenesis in XPV patients therefore may be associated with increased genomic rearrangements that result from double-strand breakage and rejoining in cells of the skin in which p53 is inactivated by UV-induced mutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xeroderma pigmentosum-variant patients from America, Europe, and Asia.

Xeroderma pigmentosum-variant (XP-V) patients have sun sensitivity and increased skin cancer risk. Their cells have normal nucleotide excision repair, but have defects in the POLH gene encoding an error-prone polymerase, DNA polymerase eta (pol eta). To survey the molecular basis of XP-V worldwide, we measured pol eta protein in skin fibroblasts from putative XP-V patients (aged 8-66 years) fro...

متن کامل

Identification of a Novel Nonsense Mutation in POLH in a Chinese Pedigree with Xeroderma Pigmentosum, Variant Type

Xeroderma pigmentosum-variant (XPV) is one type of XP, a rare autosomal recessive disorder, and caused by defects in the post replication repair machinery while nucleotide-excision repair (NER) is not impaired. In the present study, we reported a Chinese family with XPV phenotype, which was confirmed by histopathological results. Genetic variants were detected by polymerase chain reaction and e...

متن کامل

Evidence for Two Independent Pathways of Biologically Effective Excision Repair from Its Rate and Extent in Cells Cultured from Sun-sensitive Humans1

Repair-proficient human cells can be sensitized to exposure to UV radiation at 254 nm by postirradiation incubation in the presence of the eukaryotic a polymerase inhibitor, aphidicolin. The degree of sensitization has been examined in cells cultured from humans suffering from various types of sun-sensitive syndromes. Xeroderma pigmentosum (XP) variant and Bloom's cell lines (both excision prof...

متن کامل

Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse

The mutation pattern of immunoglobulin genes was studied in mice deficient for DNA polymerase eta, a translesional polymerase whose inactivation is responsible for the xeroderma pigmentosum variant (XP-V) syndrome in humans. Mutations show an 85% G/C biased pattern, similar to that reported for XP-V patients. Breeding these mice with animals harboring the stop codon mutation of the 129/Olain ba...

متن کامل

Absence of DNA Polymerase η Reveals Targeting of C Mutations on the Nontranscribed Strand in Immunoglobulin Switch Regions

Activation-induced cytosine deaminase preferentially deaminates C in DNA on the nontranscribed strand in vitro, which theoretically should produce a large increase in mutations of C during hypermutation of immunoglobulin genes. However, a bias for C mutations has not been observed among the mutations in variable genes. Therefore, we examined mutations in the mu and gamma switch regions, which c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 14  شماره 

صفحات  -

تاریخ انتشار 2000